Search results

Search for "ion transport" in Full Text gives 23 result(s) in Beilstein Journal of Nanotechnology.

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • conversion devices, such as Li-ion batteries, solar cells, solid oxide fuel cells, and thermoelectrics. Unusual and unexpected properties and also unique microstructures (and shapes), such as high porosity, high surface area, short reaction pathways, and diffusion length for Li-ion transport, eventually
PDF
Album
Full Research Paper
Published 07 Dec 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • ) because of the need for consecutive measurements in darkness and under illumination. Thus, AC-KPFM and classical KPFM measure the SPV derived from different origins, such as charge recombination (nanoseconds to milliseconds) [60], ion transport (milliseconds to seconds) [61], and surface chemical
PDF
Album
Full Research Paper
Published 25 Jul 2022

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • predominantly crystalline PVdF phase and an amorphous HFP phase, which provides necessary mechanical strength and good ion transport matrix. Magnesium-based electrochemical devices are emerging as an alternative to lithium-based devices [26][27][28][29][30]. Magnesium can be an alternative due to its
  • polymer gel electrolytes (log σ as a function of 1000/T). From the plot, it can be seen that the thermal dependence of the conductivity follows the Vogel–Tammann–Fulcher (VTF) equation, which is commonly used to explain the ion transport in amorphous polymer electrolytes [36][37]: where A is a constant
  • that shows the conductivity at an infinitely high temperature, the parameter B is the pseudo-activation energy and it is related to the critical free volume for ion transport, and T0 is a reference temperature, also called equilibrium glass transition temperature, which has a value close to the Tg
PDF
Album
Full Research Paper
Published 18 Nov 2021

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • interconnected mesoporous channels in the inner and outer surfaces of OPCGCNFs compared with DCGCNFs/OCGCNFs. The high amount of mesoporous channels was beneficial to the high-speed ion transport and adsorption. The PSD curves were used to analyze, in more detail, the differences in pore structure between
  • increase in the pore volume of the OPCGCNFs was mainly due to the increase in the number of channels in the fibers, leading to an increase in the ion transport rate. This shows that proper microporous/mesoporous structures can facilitate the transport and adsorption of ions in the electrode, which favors
  • generally have a stable and uniform internal structure, which results in a low specific surface area [16]. Pore formation is a strategy that has been used to increase the specific surface area of these materials. The porous structure not only increases the specific surface area but also facilitates ion
PDF
Album
Full Research Paper
Published 27 Aug 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • a homogeneous high signal on planar locations inside the particle. The variation of the ESM signal inside the particle is most likely caused by the anisotropic ionic mobility of the olivine structure of LFP. The olivine structure exhibits preferential lithium-ion transport along the [10] channel of
  • the lattice [56][57], which therefore influences the ESM signal intensity, since the preferential lithium-ion transport direction induces a high concentration change during the dc-voltage pulse, while for ionic blocking directions, no concentration change is achieved and therefore no change in the ESM
  • the coexistence of a lithiated and delithiated phase for LFP [78]. Additionally, other mechanisms and factors, e.g., the generation of surface layers, porosity and tortuosity of electrodes, electrolyte salts and concentration gradients in the electrodes are affecting the ion transport and therefore
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • illustrates the effect of the 3D conductive network and the high porosity on electron and ion transport [40][41]. Figure 10 shows the rate performance of LiFePO4 and Li4Ti5O12 fiber membrane electrodes. Both electrodes can be charged and discharged normally from 0.5C to 10C. When the current density returns
  • all-fiber battery. Cycle performance of the LiFePO4//Li4Ti5O12 all-fiber battery at 1C. Sketch of 3D network structure for fast electron and ion transport. Supporting Information A comparison between this work with related literature references, and photographs and SEM pictures of the LiFePO4 and
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • Ni1−xCoxS2 material is shown in Figure 4h. The ASC shows a small intercept of 1.7 Ω and semicircle with small radius in the high-frequency part which reveals a good ion transport resistance in the as-prepared ASC. The big slope at low frequencies indicates a fast mass transfer rate in the electrolyte
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • high slope at low frequency indicates small capacitive resistance (0.465 Ω) and thus fast ion transport. Therefore, the EIS results prove that the good electrochemical performance of the CC-CNT@NiO electrode can be mainly attributed to its good electrical conductivity and low charge transfer resistance
  • 50 nm. The high surface area and the mesopores can speed up the ion diffusion between electrode and electrolyte. As can be seen from Figure 5b, the NiO-coated CNTs are entangled with each other. These interconnected structures not only increase the surface area of the electrode to facilitate fast ion
  • transport but also help the electrons transfer because of the excellent conductivity of CNTs. In the detailed image of CC-CNT@NiO shown in Figure 5c, the NiO nanoparticles adhered to CNT can be seen. The HR-TEM image in Figure 5d yields an interplanar spacing of 0.202 nm corresponding to the (012) plane of
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • nature throughout the carbonaceous frameworks results in efficient charge storage and rapid ion transport. Superior cycling stability without any capacity losses even after 10000 charge/discharge cycles was also confirmed. Furthermore, preparations of three-dimensional and hierarchic structures of
PDF
Album
Review
Published 30 Jul 2019

A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

  • Kai Xiao,
  • Baris Kumru,
  • Lu Chen,
  • Lei Jiang,
  • Bernhard V. K. J. Schmidt and
  • Markus Antonietti

Beilstein J. Nanotechnol. 2019, 10, 1316–1323, doi:10.3762/bjnano.10.130

Graphical Abstract
  • Chemistry, Beihang University, 100191 Beijing, P.R. China 10.3762/bjnano.10.130 Abstract A controllable ion transport including ion selectivity and ion rectification across nanochannels or porous membranes is of great importance because of potential applications ranging from biosensing to energy conversion
  • with ion rectification have the potential to be used in salinity-gradient energy conversion and ion sensor systems. Keywords: carbon nitride; ion transport; nanochannel; nanofluidic system; photofunctionalization; Introduction Ion transport is the basis of energy and sensory systems in living
  • organisms [1]. All biological signal transport and transduction processes, including pain, haptics, vision, audition, olfaction, and muscular movement, as well as energy conversion and consumption are associated with ion transport [2][3]. For example, a plant injured on one leaf by a nibbling insect can
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2019

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  • Aaron Mascaro,
  • Yoichi Miyahara,
  • Tyler Enright,
  • Omur E. Dagdeviren and
  • Peter Grütter

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Graphical Abstract
  • allow for the measurement of time-varying forces arising from phenomena such as ion transport in battery materials or charge separation in photovoltaic systems. These forces reveal information about dynamic processes happening over nanometer length scales due to the nanometer-sized probe tips used in
  • stretching factor, and τ* is the collective (or overall) time constant for the response [30]. Note that this stretched exponential behaviour is due to the correlated nature of ion transport, which depends on the atomic and electronic structure of the material, and not necessarily due to a distribution of
PDF
Album
Supp Info
Review
Published 01 Mar 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • nm, as plotted in Figure 2i. This structural characteristic of an “ion reservoir” would bring about fast ion/electron transfer, short ion transport distances and sufficient contact at active material/electrolyte interfaces, which might improve the electrochemical performance [33]. Figure 2j shows
  • /Ni-NF/MG electrodes can be ascribed to the following analysis of its unique sandwich-like electrode structure: Firstly, the conductive ligaments of the 3D continuous Ni nanofoam together with Ni-based MG substrate can provide multidimensional electron and ion transport pathways during the reversible
  • interconnected nanopetals grown on the 3D Ni nanofoam can play the role of an “ion reservoir”, yielding fast ion transfer, short ion transport distances and sufficient contact at active material/electrolyte interfaces. Finally, a complete integrated electrode is formed by the close bonding between the Ni(OH)2
PDF
Album
Full Research Paper
Published 25 Jan 2019

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • improvement of solid state electrolytes such as LATP is a better understanding of interfacial and ion transport properties on relevant length scales in the nanometer to micrometer range. Using common techniques, such as electrochemical impedance spectroscopy, only global information can be obtained. In this
  • , as it can already be seen from the results of different lithium-ion conductivities for grain and grain boundary structures in comparison to the overall ionic conductivity, it is of utmost importance to understand the electrochemical and ion-transport properties of promising SSEs such as LATP at the
  • follows later in the manuscript. The selected regions of interest have been chosen as in area 1 (blue square) where grains of both LATP and aluminum phosphate are present, and hence, different Li-ion transport properties are to be expected. This assumption is verified by the larger ESM amplitude signal
PDF
Album
Full Research Paper
Published 28 May 2018

Nanoporous silicon nitride-based membranes of controlled pore size, shape and areal density: Fabrication as well as electrophoretic and molecular filtering characterization

  • Axel Seidenstücker,
  • Stefan Beirle,
  • Fabian Enderle,
  • Paul Ziemann,
  • Othmar Marti and
  • Alfred Plettl

Beilstein J. Nanotechnol. 2018, 9, 1390–1398, doi:10.3762/bjnano.9.131

Graphical Abstract
  • very low flow resistance of these porous membranes in ionic solutions as expected theoretically. Size-selective separation of protein molecules was demonstrated by real-time fluorescence microscopy. Keywords: ion transport; micellar technique; molecular filtration; nanopores; solid-state membrane
  • varying pore diameters are expected to be smaller than the measurement uncertainties. In accordance with these considerations, the ion transport measurements show a very high overall permeability of the nanopores. As a consequence, a small fraction of possibly blocked pores could not be resolved by the
PDF
Album
Supp Info
Full Research Paper
Published 09 May 2018

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • electrostatic force microscopy (EFM) on organic photovoltaic blends [14][15][16]. By applying a bias pulse to the atomic force microscopy (AFM) tip, Schirmeisen et al. studied the ion transport in solid electrolytes [17]. By applying bias pulses across organic field-effect transistors (OFETs) electronic
PDF
Album
Full Research Paper
Published 24 Apr 2018

Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics

  • Stefania Lettieri,
  • Marta d’Amora,
  • Adalberto Camisasca,
  • Alberto Diaspro and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2017, 8, 1878–1888, doi:10.3762/bjnano.8.188

Graphical Abstract
  • changes in the cells and tissues. Some of these events include cell proliferation and apoptosis [1], ion transport [2] and other cellular process and diseases such as cancer [3][4][5], Parkinson's, and Alzheimer's disease [6]. Despite the large number of nanotechnology platforms available to date for
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2017

First examples of organosilica-based ionogels: synthesis and electrochemical behavior

  • Andreas Taubert,
  • Ruben Löbbicke,
  • Barbara Kirchner and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2017, 8, 736–751, doi:10.3762/bjnano.8.77

Graphical Abstract
  • Inorganic Materials, Institut de Chimie de Clermont-Ferrand (ICCF) - UMR 6296, Université Blaise Pascal, Chimie 5, Campus des Cézeaux, 24 avenue des Landais, BP 80026 63171 Aubière Cedex, France 10.3762/bjnano.8.77 Abstract The article describes the synthesis and properties of new ionogels for ion
  • transport. A new preparation process using an organic linker, bis(3-(trimethoxysilyl)propyl)amine (BTMSPA), yields stable organosilica matrix materials. The second ionogel component, the ionic liquid 1-methyl-3-(4-sulfobutyl)imidazolium 4-methylbenzenesulfonate, [BmimSO3H][PTS], can easily be prepared with
PDF
Album
Full Research Paper
Published 29 Mar 2017

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether
PDF
Album
Review
Published 23 Apr 2015

Multiscale modeling of lithium ion batteries: thermal aspects

  • Arnulf Latz and
  • Jochen Zausch

Beilstein J. Nanotechnol. 2015, 6, 987–1007, doi:10.3762/bjnano.6.102

Graphical Abstract
  • equations derived above are valid in the electrolyte as well as in the active particles. The value and the physical mechanisms underlying the transport coefficients are different. Diffusion mechanisms in solids are different from those in electrolytes. Conduction in electrolytes is due to ion transport, but
  • ), heat of mixing (IV) and Soret–Dufour effect (V). The technical details can be found in the Appendix. The final result for the volume averaged heat equation is Interestingly, all surface terms due to the coupling of heat and ion transport (terms proportional to kT) from the Soret–Dufour effect and due
PDF
Album
Full Research Paper
Published 20 Apr 2015

Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition

  • Nicolas Sobel,
  • Christian Hess,
  • Manuela Lukas,
  • Anne Spende,
  • Bernd Stühn,
  • M. E. Toimil-Molares and
  • Christina Trautmann

Beilstein J. Nanotechnol. 2015, 6, 472–479, doi:10.3762/bjnano.6.48

Graphical Abstract
  • properties such as diameter and conformation variations due to dangling bonds, swelling, or surface charge variations from pH changes of the solution, are to a large extent unknown but can influence ion transport and the control of surface modification steps in a crucial manner. A homogeneous conformal
  • interesting to study water and ion transport in confinement [15][16]. Coated templates are also attractive to synthesize extremely thin nanowires for the investigation of finite size and quantum size effects [17]. Atomic layer deposition is based on cycles of self-limiting chemical reactions between the gas
PDF
Album
Full Research Paper
Published 16 Feb 2015

Kelvin probe force microscopy in liquid using electrochemical force microscopy

  • Liam Collins,
  • Stephen Jesse,
  • Jason I. Kilpatrick,
  • Alexander Tselev,
  • M. Baris Okatan,
  • Sergei V. Kalinin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2015, 6, 201–214, doi:10.3762/bjnano.6.19

Graphical Abstract
  • local concentration of ions through migration (field-driven ion transport) and diffusion (concentration-gradient-driven transport) both to and from the solid–liquid interface as well as electron transfer reactions across the interface, resulting in a broad spectrum of charge relaxation timescales (ns–s
  • Equations 1–3 are required to account for non-linear effects (e.g., ion crowding and Faradaic reactions) across all bias ranges. Towards a complete understanding of these phenomena, it is expected that the full time-dependent ion transport dynamics, recently developed for ideally polarizable electrodes
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2015

Liquid fuel cells

  • Grigorii L. Soloveichik

Beilstein J. Nanotechnol. 2014, 5, 1399–1418, doi:10.3762/bjnano.5.153

Graphical Abstract
PDF
Album
Review
Published 29 Aug 2014

Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed

  • Hongxia Wang,
  • Meinan Liu,
  • Cheng Yan and
  • John Bell

Beilstein J. Nanotechnol. 2012, 3, 378–387, doi:10.3762/bjnano.3.44

Graphical Abstract
  • process between electrons at the Pt electrode and I3− ions of the electrolyte, RPt. Zw is the Warburg resistance arising from the ion transport in the electrolyte and Ztl is a distribution line describing the electron transport and recombination in the mesoporous TiO2 film [13][16]. A typical EIS spectrum
PDF
Album
Full Research Paper
Published 07 May 2012
Other Beilstein-Institut Open Science Activities